Abstract
Digital images can suffer from periodic noise, resulting in the appearance of repetitive patterns on the image data and quality degradation. In order to effectively reduce the periodic noise effects, a novel adaptive Gaussian notch filter is proposed in this paper. In the presented method, the frequency regions that correspond to noise are determined by applying a segmentation algorithm on the spectral band of the noisy image using an adaptive threshold. Then, a region growing algorithm tries to determine the bandwidth of each periodic noise component separately. Subsequently, proper Gaussian notch filters are used to decrease the periodic noises only at the contaminated noise frequencies. The proposed filter and some other well-known filters including the frequency domain mean and median filters and also the traditional Gaussian notch filter are compared to evaluate the effectiveness of the approach. The results in different conditions show that the proposed filter gains higher performance both visually and quantitatively with lower computational cost. Furthermore, compared with the other methods, the proposed filter does not need any tuning and parameter adjustments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.