Abstract

Feedrate scheduling is crucial for CNC systems to generate a smooth movement which is able to satisfy increasing requirements on machining quality and efficiency. In this paper, a novel adaptive feedrate interpolation method is proposed for NURBS tool path with drive constraints. The tool path is first expressed in NURBS form, and then the satisfaction conditions of drive constraints are derived according to the kinematic and geometric characteristics of the NURBS tool path. On this base, a proportional adjustment algorithm, which can quantitatively reduce the accelerations and jerks of drive axes at the sensitive regions of feed profile, is proposed to achieve the new positions of violated sampling points. After each adjustment, a curve evolution strategy is used to ensure the feed profile is locally or globally deformed to the target positions with a good smoothness of path curve and the avoidance of re-interpolation. Through the iterative adjustment, a smooth feed profile with limited velocities, accelerations and jerks of drive axes is thus yielded along the entire tool path. Finally, performances of the proposed method are validated by performing both simulations and experiments on two freeform NURBS curves. The results show the effectiveness and reliability of the proposed feedrate interpolation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.