Abstract

Pneumatic artificial muscle is widely used since it has the advantage including simple structure, lightweight, force controllable, compliance and so on. In this paper, a two-link anthropomorphic arm is constructed by pneumatic artificial muscles for the upper-limb rehabilitation training. In order to assist impaired upper-limb patients to achieve various training, the anthropomorphic arm should realize flexible human reaching movements. Due to frictions and model uncertainties of the anthropomorphic arm system, an adaptive fuzzy backstepping control is proposed to ensure the stability and the adaptivity during the motion. The control method is proved by Lyapunov asymptotic stability and is verified by numerical simulations. Furthermore, experiments are performed and results demonstrate that the proposed control method is efficient and robust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call