Abstract

A technique which improves the performance of the boost converter by reducing the reverse-recovery-related losses in the boost switch and rectifier with an active snubber that is implemented with a minimum number of components is presented. This minimum-component-count snubber consists of a snubber inductor, an auxiliary switch, and a rectifier. The proposed technique reduces the reverse-recovery-related losses by controlling the turn-off di/dt rate of the rectifier current with the snubber inductor connected in series with the boost switch and rectifier. The voltage and current stresses of the components in the proposed active-snubber boost converter are similar to those in its conventional "hard-switched" counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.