Abstract
Scientific efforts have expanded in age-invariant face recognition (AIFR). Matching faces of large age difference is, therefore, a problem, mostly because of a substantial disparity in the appearance of both young and old age. Owing to age, both the appearance and shape of the face are impaired, making recognition of the face the most challenging task. In recent years, AIFR has become a very common and demanding task. The set of feature extraction and classification algorithm is of prime importance in this field. As the numbers of features obtained from the datasets are large, there is a need to introduce a dimensionality reduction method to map high dimensionality feature space to low variance filter to form the final integrated face age model to be used in the classification process. In this paper, we introduced a novel concept of an improved Active Shape Model (ASM) in conjunction with a specially designed 7-layered Convolutional Neural Network (CNN) in order to accomplish a combination of feature extraction and classification in a single unit. The study approach involves conducting extensive experiments to evaluate the proposed system's performance using three standard datasets: FG-NET, LAG, and CACD. The results reveal that the proposed method outperforms state-of-the-art approaches and achieves excellent accuracy in face recognition across age. The maximum accuracies achieved by demonstrated ASM-CNN methodology for FG-NET, LAG, and CACD databases are 95.02%, 91.76 % and 99.4 % respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.