Abstract

Electrokinetic micropumps have been widely used in lab-on-a-chip devices. The AC electrothermal (ACET) effect is highly efficient for biofluidic micropumping, but is unable to generate high flow rates. Attempts to increase ACET flows, such as applying a wide range of actuation voltages, using asymmetric microelectrode arrays and using 3D microelectrodes have been reported. In this paper a novel idea of employing circular coplanar asymmetric microelectrodes placed on the perimeter of a microchannel is explored. An array of microelectrodes is simulated using COMSOL Multiphysics software. The micropump output shows relatively high flow rates compared to other ACET micropumps which have the same electrode dimensions. Moreover, the idea of using different micropumps with scaled dimensions is investigated. The results show that a highly efficient ACET micropump can be achieved if an appropriate electrode size-to-channel dimension ratio is selected. The results also show that a micropump with a scale of 0.2 can show negligible flow rate, but if the electrodes are used in a micropump with the scale of 1, a flow rate of 15 ×10<sup>6</sup> μm<sup>3</sup>/s can be generated. This new ACET pump design can be utilized for lab-on-a-chip applications, specifically in biofluid delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call