Abstract

In this paper, the matrix algorithm PFPD is generalized in order to compute the power flow solution of real and large AC/DC transmission networks. In particular, it is demonstrated that the HVDC-VSC/LCC links can be seen from the AC power systems as PV/PQ constraints, which englobe both the AC and DC characteristics of the HVDC links. The proposed analytical formulation to assess the PV/PQ constraints is valid for any other numerical methods ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e.g.,</i> Newton-Raphson and derived, Gauss-Seidel, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">etc.</i> ). Furthermore, an iterative procedure for estimating the reactive power absorption of HVDC-LCC links from the power system is proposed. In order to validate the algorithm, solution comparisons with the commercial software DIgSILENT PowerFactoy are presented. This validation procedure shows that the algorithm can analyse large and real HVAC/HVDC networks ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e.g.</i> , the Italian transmission one with its five HVDC links). Therefore, the conciseness, accuracy and performances of PFPD for studying real and large AC/DC power systems is confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.