Abstract

Abstract. In combination with the advantages of parallel mechanisms and compliant mechanisms, a 5-DOF compliant parallel mechanism is designed to meet the requirements, such as large stroke, large load capacity, high precision and high stability, for a large-aperture grating tiling device. The structure and characteristics of the 5-DOF compliant parallel mechanism are presented. The kinematics of the mechanism are derived based on a pseudo-rigid-body model as well. To increase the tiling position retention stability of the mechanism, a closed-loop control system with capacitive position sensors, which are employed to provide feedback signals, is realized. A position and orientation monitoring algorithm and a single neuron adaptive full closed-loop control algorithm are proposed. Performance testing is implemented to verify the accuracy and the tiling position retention stability of the grating tiling device. The experimental results indicate that the tiling accuracy reaches 0.2 µrad per step and 20 nm per step, and the tiling position retention stability can achieve 1.2 µrad per 30 min and 35 nm per 30 min in the rotational direction and the translational direction, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.