Abstract

BackgroundTreatment of atlantoaxial dislocation is aimed at reduction and stabilization of the atlantoaxial joint. 3D printing refers to a process where additive manufacturing is achieved under precise computer control. Literature on its utilization in anterior atlantoaxial fixation and fusion is rare. This study is the first report on a 3D-printed locking cage used in the anterior procedure for atlantoaxial dislocation.MethodsA middle-aged male in his 40s presented with weakness and numbness of his extremities for 3 years and could only walk slowly with assistance. Imaging studies revealed severe anterior migration of C1, irreducible atlantoaxial dislocation, and severe cervical-medullary compression. A preoperative plan consisting of trans-oral soft tissue release and fixation using tailor-designed 3D-printed cages was devised. Following fluoroscopic confirmation of reduction of the atlantoaxial joints, two customized 3D-printed cages made of titanium alloy were inserted into the bilateral facet joints, which were then locked by six screws into the lateral masses of C1 and C2. The microstructure of the inserted cages was optimized for improved biomechanical stability and enhanced osseo-integration, without the need for bone grafting. In addition, a biomechanical test was performed on seven human cadaveric specimens comparing the novel implant with the conventional C1 lateral mass-C2 pedicle screw construct in three modes of motion (flexion-extension, lateral bending, axial rotation).ResultsImprovement of neurologic function in the patient was evident immediately after surgery. He was able to walk independently 1 month post-operatively. At the 12-month follow-up, coronal reconstruction of CT demonstrated properly-positioned 3D-printed cages, evidence of osseo-integration at the bone-implant interface, and no subsidence or displacement of the implant. Eighteen months out of surgery, the mJOA score improved to 15, and lateral X-ray confirmed reduction of atlanto-axial dislocation. Additionally, the new construct provided strong fixation comparable to that conferred by conventional constructs as there was no significant difference observed between the two groups in all three directions of motion.ConclusionsThe novel implant represents a new option in the treatment of irreducible atlantoaxial dislocation. It can provide strong anterior support for solid fixation and fusion with a low profile and a microstructure that obviates the need for bone grafting.

Highlights

  • Treatment of atlantoaxial dislocation is aimed at reduction and stabilization of the atlantoaxial joint. 3D printing refers to a process where additive manufacturing is achieved under precise computer control

  • In the management of irreducible atlantoaxial dislocation (IAAD), the goal of treatment consists of restoration of the normal anatomy of the cranio-vertebral junction (CVJ), complete decompression of the lower medulla and the upper spinal cord, and stabilization of the atlantoaxial joints [1, 2]

  • (with peri-odontoid soft tissue release followed by anterior fixation) represents another strategy which eliminates the need for a two-step operation [6]

Read more

Summary

Introduction

Treatment of atlantoaxial dislocation is aimed at reduction and stabilization of the atlantoaxial joint. 3D printing refers to a process where additive manufacturing is achieved under precise computer control. This study is the first report on a 3D-printed locking cage used in the anterior procedure for atlantoaxial dislocation. The main procedures reported in the literature include trans-oral odontoidectomy or peri-odontoid tissue release followed by posterior occipito-cervical or atlanto-axial fusion [3,4,5]. (with peri-odontoid soft tissue release followed by anterior fixation) represents another strategy which eliminates the need for a two-step operation [6]. This single-stage procedure used a reduction plate to achieve decompression, reduction and fusion, all through a transoral incision. The biomechanics of this new 3D-printed locking cage (3DPLC) was evaluated in seven cadaver specimens

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call