Abstract
Continuous chromatography has emerged as one of the most attractive methods for protein purification. Establishing such systems involves installing several chromatographic units in series to enable continuous separation processes and reduce the cost of the production of expensive proteins and biopharmaceuticals (such as monoclonal antibodies). However, most of the established systems are bulky and plagued by high dead volume, which requires further optimization for improved separation procedures. In this article, we present a miniaturized periodic counter-current chromatography (PCCC) system, which is characterized by substantially reduced dead volume when compared to traditional chromatography setups. The PCCC device was fabricated by 3D printing, allowing for flexible design adjustments and rapid prototyping, and has great potential to be used for the screening of optimized chromatography conditions and protocols. The functionality of the 3D-printed device was demonstrated with respect to the capture and polishing steps during a monoclonal antibody purification process. Furthermore, this novel miniaturized system was successfully used for two different chromatography techniques (affinity and ion-exchange chromatography) and two different types of chromatographic units (columns and membrane adsorbers). This demonstrated versability underscores the flexibility of this kind of system and its potential for utilization in various chromatography applications, such as direct product capture from perfusion cell cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.