Abstract

The rational design of novel non-precious oxygen reduction reaction (ORR) electrocatalysts with good catalytic activity for energy conversion devices is under the spotlight of current research. Herein, we designed and fabricated a novel 3D Co-derived CNTs embedded nitrogen-doped carbon framework (denoted as Co-CNTs@NCFT, where T represents the pyrolysis temperature) as an efficient ORR catalyst by pyrolysis of the bimetallic metal-organic framework (MOF) in the presence of graphene oxide (GO). The optimized catalyst furnishes large specific surface area, outstanding electrical conductivity and rapid mass transport rates during reactions. Because of these synergistic advantages, the Co-CNTs@NCF900 exhibits excellent ORR catalytic activity in terms of a high onset potential of 0.96 V and a half-wave potential of 0.84 V in alkaline electrolyte, outperforming the commercial Pt/C. Furthermore, the Co-CNTs@NCF900 manifests good stability and methanol tolerance comparable to the commercial Pt/C catalyst. The presented strategy open up a new avenue for the synthesis of novel electrocatalysts derived from MOF materials for energy-related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.