Abstract
A variable inductor consists of a magnetic core, primary dc windings, and secondary ac windings. The effective inductance of the secondary ac winding can be controlled by the primary dc current because of its nonlinear magnetic characteristic. Hence, variable inductors can be applied as a reactive power compensator for voltage stabilization in electric power systems, and have desirable features such as a simple and robust structure, low cost, and high reliability. In a previous paper, a concentric-winding-type three-phase variable inductor with a 2-D structure has been proposed. It was demonstrated that the 2-D variable inductor has good controllability and a low distortion current. To further increase productivity and reduce costs, this paper presents a novel concentric-winding-type three-phase variable inductor with a 3-D structure. It is demonstrated that the leakage flux of the proposed 3-D variable inductor is reduced by more than 30%. Furthermore, a 6.6 kV-100 kVA 3-D variable inductor is designed and compared to its 2-D counterpart. It is proved that eddy current loss, which is induced within an oil-immersed self-cooled tank because of leakage flux from the variable inductor, can be reduced to one-third of that of the 2-D variable inductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.