Abstract

In this investigation, the flexible string algorithm (FSA), used before for inverse design of subsonic and supersonic ducts in compressible flows with and without normal shock, is developed and applied for inverse design of 2D incompressible viscous internal flow with and without separation. In the proposed method, the duct wall shape is changed under an algorithm based on deformation of a virtual flexible string in flow. At each modification step, the difference between current and target wall pressure distributions is applied to the string. The method is an iterative inverse design method and utilizes the analysis code for the flow field solution as a black-box. Some validation test cases and design examples are presented here, which show the robustness and flexibility of the method in handling complex geometries. In cases with separated flow pressure distribution, a unique solution for inverse design problem does not exist. The design algorithm is a physical and quick converging approach and can efficiently utilize commercial flow analysis software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call