Abstract

The development of novel strategies for the treatment of malignancies by successful intervention in advanced stage disease is a major challenge in oncology. We tested the hypothesis that this can be achieved by the rational design of taxoid onium salts modified at C-7 and C-2' positions. The characterization of these molecules revealed a dramatically improved water solubility and prodrug behavior in plasma. Specifically, all compounds released parental paclitaxel with half-lives ranging from 0.9 to 180 min. In the absence of plasma, only the 2'-(N-methylpyridinium acetate) derivative of paclitaxel (2'-MPA-paclitaxel) revealed a complete abrogation of paclitaxel specific microtubule assembly disassembly dynamics and a 3 log reduction in cellular binding, indicating that reversible blockage of the C-2' position by methylpyridinium acetate yields a true paclitaxel prodrug. Structure/activity profiles of all compounds in tissue culture revealed cytotoxicity effective at picomolar concentrations with a panel of 16 cancer cell lines in contrast to 4 nonmalignant cell lines. Importantly, the decisive cytotoxic potential observed in vitro for all compounds correlated only with in vivo findings for 2'-MPA-paclitaxel. Specifically, the 2'-MPA-paclitaxel prodrug induced regression of primary tumors in three xenograft models of nonsmall cell lung carcinoma, ovarian carcinoma and prostate cancer, in contrast to ineffective C-7 derivatives and parental paclitaxel. At the same time, a reduced systemic toxicity of 2'-MPA-paclitaxel was observed in contrast to a far more toxic parental paclitaxel. Taken together, these findings demonstrate that the 2'-MPA-paclitaxel prodrug is a promising new candidate for cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.