Abstract

In recent years, photoelectric performances of many low-dimensional metal halide hybrid materials have been researched and utilized in the domain of phosphors, light emitting diodes (LEDs) and photoelectric detection etc. Nevertheless, unlike two-dimensional (2D) ones, one-dimensional (1D) hybrids received less attention to study their structures and optical properties. Herein, we deal with luminous performance and photoluminescence mechanism for an original 1D organic-inorganic lead chloride hybrid C5H14N3PbCl3 which is abbreviated as TMGPbCl3 (TMG+ = 1, 1, 3, 3-tetramethyguanidine cation). According to photoluminescence spectra, its broadband white-light luminescence are dual emissions from organic component TMG+ peaked at 429 nm and self-trapped excitons (STEs) of inorganic metal halide octahedra peaked at 510 nm, respectively and this property make it to be a promising white-light phosphor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call