Abstract

Due to variation of working conditions and influence of noise in vibration data, rolling bearing intelligent diagnosis based on deep learning faces challenges in efficient utilization of monitoring data and scientific extraction of fault features. This study proposes a one-dimensional convolution neural network (1D-CNN)-based intelligent diagnosis method for a rolling bearing, which fuses the horizontal and the vertical vibration signals, makes full use of spectral order features by full-spectrum analysis, and achieves accurate classification of fault pattern by 1D-CNN model. The experimental datasets of constant and variable working conditions of rolling bearing are constructed. The test results of the proposed method show that spectral order features are extracted effectively by full-spectrum analysis and high diagnostic accuracy is obtained by the constructed 1D-CNN model on both datasets. The comparison with the other four similar methods indicates that the diagnostic accuracy of the proposed method outperforms the comparative methods significantly in the case of variable operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.