Abstract

This paper concerns the utilisation of a gas bladder hydraulic suppressor to mitigate oscillations in the delivery flow rate of positive displacement machines. The research focuses on two primary objectives: first, the experimental validation of the potential of this solution and second, the formulation of a one-dimensional fluid dynamic model for the suppressor. The foundational framework of the fluid dynamic model is based on the equations governing fluid motion with a one-dimensional approach. To accurately depict the fluid dynamics within the suppressor, a unique approach for determining the speed of sound was incorporated, and it implemented the instantaneous cross-sectional area and the inertial effect of the bladder. This paper is a development of a previous work to also investigate the positioning along the delivery pipe of the suppressor with respect to the pump. The study presents the performance of the suppressor and points out the effects of its relative position with respect to the pump that becomes particularly relevant at high speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call