Abstract

Selective photothermolysis of the sebaceous glands has the potential to be an effective alternative for treating acne vulgaris. However, the translation of this technique to clinical settings has been hindered by a lack of appropriate energy sources to target sebaceous glands, concerns surrounding safety, and treatment-related discomfort and downtime. In this work, we introduce the first FDA-approved system that combines a 1726-nm laser and efficient contact cooling to treat mild, moderate, and severe acne effectively while ensuring safety and minimal patient discomfort without adjunct pain mitigation techniques. Light transport and bioheat transfer simulations were performed to demonstrate the system's efficacy and selectivity. The resulting thermal damage to the skin and sebaceous glands was modeled using the Arrhenius kinetic model. Numerical simulations demonstrated that combining laser energy and optimal contact cooling could induce a significant temperature increase spatially limited to the sebaceous gland; this results in highly selective targeting and maximum damage to the sebaceous gland while preserving other skin structures. In vivo human facial skin histology results corroborated the simulation results. The studies reported here demonstrate that the presented 1726-nm laser system induces selective photothermolysis of the sebaceous gland, providing a safe and effective method for the treatment of acne vulgaris.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.