Abstract

Previous studies investigating donkey parentage and genetic diversity used horse-specific multiplex systems. However, several mis-allele and null-allele issues were found with some of the horse primers when used in donkeys. In 2017, the International Society for Animal Genetics (ISAG) recommended 13 dinucleotide short tandem repeats (STRs) (AHT4, ASB23, HMS2, HMS3, HMS6, HMS7, HMS18, HTG7, HTG10, TKY297, TKY312, TKY337 and TKY343) as a core panel that should be used to identify individuals and to test for parentage in donkeys. To date, no single multiplex STR typing system containing all 13 donkey STRs recommended by the ISAG has been reported. To establish a novel and donkey-specific multiplex STR typing system containing all 13 recommended STRs. Assay development and validation in field population. Primers for seven of the STRs were redesigned and conditions for polymerase chain reaction (PCR) were optimised. We analysed the allele sequences, sensitivity, species-specificity and stutter ratios of this new system. A 13-plex STR typing system for donkey was established. A full profile could be generated from a single PCR reaction using as little as 5ng of DNA template with the 13 pairs of primers labelled with fluorescent dyes. An allele ladder, containing 101 alleles from the 13 STRs, was generated. No full genotype profile was generated with these primers if DNA from humans, or 11 other commonly encountered animals, was used. Genotypes could be generated for the horse and horse-donkey hybrids (mule and hinny). Stutter ratios and population genetic parameters were calculated based on samples from 150 donkeys. The combined probabilities of paternity exclusion for this system were 0.988907326 (CPEduo) and 0.999665018 (CPEtrio). This system cannot detect sex. Our results indicate that our donkey-specific 13-plex STR typing system is sensitive, species-specific and robust for individual identification, paternity testing and population genetic analysis in donkeys, and has potential forensic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.