Abstract
A novel two-step coarse-fine time-to-digital converter (TDC) is fabricated in 65-nm CMOS, with a relaxation oscillator based peak counter (ROC) for the coarse stage and a successive approximation analog-to-digital converter (SAR-ADC) for the fine stage. A reconfigurable 3-bit digital counter expands the dynamic range, and a high-precision 9-bit SAR-ADC ensures the resolution. The proposed ROC-ADC scheme conducts the time residence and the transfer linearity well for two-step quantization. Experimental results show that the presented 12-bit TDC achieves a high resolution less than 8 ps and a wide dynamic range up to 30 ns, with the differential nonlinearity (DNL) and integral nonlinearity (INL) values of 0.92 LSB and 1.07 LSB, respectively. The TDC consumes a low power of 0.6 mW from a 1-V supply, with the active area of 0.14 mm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.