Abstract

A new 1:2 inclusion complex of cucurbit[8]uril (CB[8]) and protonated N-phenylpiperazine was synthesized and characterized by 1H NMR and X-ray crystallography. The crystal structure showed that the phenyl rings of the two equivalents of guest encapsulated in the cavity of CB[8] are parallel to one another with a mean plane separation of 3.899 A. In contrast, the piperazinyl phenyl ammonium moieties slightly protrude from the ureidyl carbonyl lined portals in order to accommodate the ion–dipole interaction between host and guest which provides a substantial driving force for the assembly. The oxygen atoms of the carbonyl groups form hydrogen bonds with the hydrogen atoms in both bridging methylene groups of CB[8] and water molecules. There are also hydrogen bonds formed among CB[8], water, and the protonated piperazinyl rings. These hydrogen bonds are formed between the ureidyl C=O groups and hydrogens in methylenes of piperazinyl rings; through hydrogen bonding N+–H···O(H)–H···O=C. The protonated piperazinyl rings connect the carbonyl groups with the bridging water molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.