Abstract

The Martin boundary theory allows one to describe all positive harmonic functions in an arbitrary domain $E$ of a Euclidean space starting from the functions $k^y(x)=\sfrac{g(x,y)}{g(a,y)}$, where $g(x,y)$ is the Green function of the Laplacian and $a$ is a fixed point of $E$. In two previous papers a similar theory was developed for a class of positive functions on a space of measures. These functions are associated with a superdiffusion $X$ and we call them $X$-harmonic. Denote by $\M_c(E)$ the set of all finite measures $\mu$ supported by compact subsets of $E$. $X$-harmonic functions are functions on $\M_c(E)$ characterized by a mean value property formulated in terms of exit measures of a superdiffusion. Instead of the ratio $\sfrac{g(x,y)}{g(a,y)}$ we use a Radon-Nikodym derivative of the probability distribution of an exit measure of $X$ with respect to the probability distribution of another such measure. The goal of the present note is to find an expression for this derivative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.