Abstract

A Hosoya polynomial is a polynomial connected to a molecular graph, which is a graph representation of a chemical compound with atoms as vertices and chemical bonds as edges. A graph invariant is the Hosoya polynomial; it is a graph attribute that does not change under graph isomorphism. It provides information about the number of unique non-empty subgraphs in a given graph. A molecular graph's size and branching complexity are determined by a topological metric known as the Wiener index. The Wiener index of each pair of vertices in a molecular network is the sum of those distances. The topological index, one of the various classes of graph invariants, is a real number related to a connected graph's structure .The goal of this article is to compute the Hosoya polynomial of some class of Abid-Waheed graph. Further, this research focused on a C++ algorithm to calculate the wiener index of and . The Wiener index (W∗I) and Hyper-Wiener index (H∗W∗I) are calculated using Hosoya polynomial (H∗-polynomial) of some family of Abid-Waheed graphs and . Illustrations and applications are given to enhance the research work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.