Abstract
Consider a tiling $\mathcal T$ of the two-dimensional Euclidean space made with copies up to translation of a finite number of polygons meeting each other full edge to full edge. In this paper, we prove that, associated with $\mathcal T$ , there exists a tiling of a (compact) translation surface made with copies up to translation of some of the polygons used to construct $\mathcal T$ . Furthermore, when $\mathcal T$ is repetitive, there exists a tiling of a translation surface, made with copies up to translation of arbitrarily large polygons chosen in a finite collection of patches of $\mathcal T$ ; each of these patches contain copies of all the polygons used to construct $\mathcal T$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.