Abstract
We extend the result in Olmos and Reggiani (J. Reine Angew. Math. 664:29–53, 2012) to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.