Abstract

We consider the orthogonality graph Omega(n) with 2^n vertices corresponding to the 0-1 n-vectors, two vertices adjacent if and only if the Hamming distance between them is n/2. We show that the stability number of Omega(16) is alpha(Omega(16))= 2304, thus proving a conjecture by Galliard. The main tool we employ is a recent semidefinite programming relaxation for minimal distance binary codes due to Schrijver. As well, we give a general condition for Delsarte bound on the (co)cliques in graphs of relations of association schemes to coincide with the ratio bound, and use it to show that for Omega(n) the latter two bounds are equal to 2^n/n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.