Abstract

A series of transient tests were conducted to determine the seafloor coupling characteristics of a new ocean-bottom seismometer (OBS) developed for the United States Office of Naval Research (ONR). The OBS comprises a large recording package and a separate sensor package that is deployed from the recording package. In addition to the coupling characteristics of both the sensor and the recording packages, the seismic energy radiated from the main recording package as a result of motion of the recording package was measured. The observed vertical coupling resonances of both the recording package and the sensor package are in good agreement with those predicted by a simple model of soil-structure interaction. The most important result of this study is that significant energy is radiated from the recording package in response to horizontal motions of the recording package. When the sensor package is 1 m from the recording package, the amplitude of the recorded signal is similar to that recorded in the recording package. In the field, this effect will result in distortion of seismic signals and increased background noise recorded by the sensor package if the recording package is disturbed by seafloor currents or biological activity. The amplitude of this signal attenuates by approximately a factor of two as sensor/recorder separation is increased from 1 to 6 m, suggesting that an improved response can be achieved by increasing the separation between the recording package and the sensors. This effect is much less severe for vertical disturbances of the recording package.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.