Abstract
Lie-Rinehart algebras, also known as Lie algebroids, give rise to Hopf algebroids by a universal enveloping algebra construction, much as the universal enveloping algebra of an ordinary Lie algebra gives a Hopf algebra, of infinite dimension. In finite characteristic, the universal enveloping algebra of a restricted Lie algebra admits a quotient Hopf algebra which is finite-dimensional if the Lie algebra is. Rumynin has shown that suitably defined restricted Lie algebroids allow to define restricted universal enveloping algebras that are finitely generated projective if the Lie algebroid is. This note presents an alternative proof and possibly fills a gap that might, however, only be a gap in the author's understanding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Belgian Mathematical Society - Simon Stevin
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.