Abstract

In previous work (Bull. Math. Biophysics,23, 393–403, 1960) it was shown that, if primary genetic processes are of an essentially microphysical nature, the objects bearing the primary genetic information must act in a catalytic fashion. At the same time it was pointed out that the kind of catalysis involved in the primary genetic process was fundamentally different, in specific ways, from that occurring, e.g., in enzyme systems. The present work demonstrates that, if the information-bearing objects of the general theory are identified with molecules of DNA, and the primary gene products are considered to be RNA of the “messenger” variety, then the predictions of the general theory can be compared with experimental data from various recently isolated polymerase systems, which appear to “copy” a sequence of nucleotides from DNA into RNAin vitro, and with certainin vivo microbial systems. It is found that these data provide detailed support for the conclusions drawn from the general theory. However, it is emphasized that the identification of the information-bearing objects and primary gene products as DNA and RNA respectively, which allows us to compare the theory with the cited data, is by no means the only identification which can be made; i.e., other interpretations of the general theory are certainly not precluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.