Abstract

A collision for a function $f$ is two distinct inputs $x_1\neq x_2$ such that $f$ outputs the same value on both inputs: $f(x_1)=f(x_2)$. The quantum query complexity of finding collisions has been shown~\cite{BHT1997,AS2004, Ambainis05, Kutin05} in some settings to be $\Theta(N^{1/3})$; however, these results do not apply to random functions. The issues are two-fold. First, the $\Omega(N^{1/3})$ lower bound only applies when the domain is no larger than the co-domain, which precludes many of the cryptographically interesting applications. Second, most of the results in the literature only apply to $r$-to-1 functions, which are quite different from random functions. Understanding the collision problem for random functions is of great importance to cryptography, and we seek to fill the gaps of knowledge for this problem. To that end, we prove that, as expected, a quantum query complexity of $\Theta(N^{1/3})$ holds for all interesting domain and co-domain sizes. Our proofs are simple, and combine existing techniques with several novel tricks to obtain the desired results. Using our techniques, we also give an optimal $\Omega(M^{1/3})$ lower bound for the set equality problem. This lower bound can be used to improve the relationship between classical randomized query complexity and quantum query complexity for so-called permutation-symmetric functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.