Abstract

Let $F$ be a quadratic APN function of $n$ variables. The associated Boolean function $\gamma_F$ in $2n$ variables ($\gamma_F(a,b)=1$ if $a\neq{\bf 0}$ and equation $F(x)+F(x+a)=b$ has solutions) has the form $\gamma_F(a,b) = \Phi_F(a) \cdot b + \varphi_F(a) + 1$ for appropriate functions $\Phi_F:\mathbb{F}_2^n\to \mathbb{F}_2^n$ and $\varphi_F:\mathbb{F}_2^n\to \mathbb{F}_2$. We summarize the known results and prove new ones regarding properties of $\Phi_F$ and $\varphi_F$. For instance, we prove that degree of $\Phi_F$ is either $n$ or less or equal to $n-2$. Based on computation experiments, we formulate a conjecture that degree of any component function of $\Phi_F$ is $n-2$. We show that this conjecture is based on two other conjectures of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.