Abstract

AbstractA recent study observed the existence of a salient bias towards the symmetric part of the tropical wavenumber-frequency spectrum. Examination of the tropical Brightness Temperature (BT) spectrum in this note shows that its parity difference, i.e., the difference between its symmetric and anti-symmetric components, is concentrated in regions of the wavenumber-frequency plane corresponding to the spectral bands suggested by Wheeler and Kiladis (1999). In terms of the difference between the spectral power in the symmetric and anti-symmetric components, the spectral bands corresponding to Kelvin waves, Madden-Julian Oscillation, and Rossby waves explain about 31%, 21%, and 13% of the symmetric bias, respectively, while the combined contribution of all the other bands is negligible. The “background” spectrum after filtering out all the spectral bands explains the remaining 35% of the symmetric bias. As these spectral bands were originally designed for filtering convectively coupled equatorial waves, the findings of this note may help estimate the contributions of different wave features to the symmetric bias in the tropical BT spectrum. In addition, these findings may also help better understand the processes responsible for generating the tropical background spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.