Abstract
Recently published scanning electron and transmission electron photomicrographs of cells of the bacterium Escherichia coli exposed to plasma glow discharges at atmospheric pressure indicate physical disruption of their outer cell membranes. However, the mechanism of cell disruption was unclear. Here, we propose and model an electrophysical mechanism for this phenomenon, namely, the electrostatic disruption of the cell membrane, which takes place when it has acquired a sufficient electrostatic charge that the outward electrostatic stress exceeds its tensile strength. It also appears that surface roughness or irregularity would render it more sensitive to electrostatic disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.