Abstract

<p style='text-indent:20px;'>In this brief note we discuss local Hölder continuity for solutions to anisotropic elliptic equations of the type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \label{prototype} \sum\limits_{i = 1}^s \partial_{ii} u+ \sum\limits_{i = s+1}^N \partial_i \bigg(A_i(x, u, \nabla u) \bigg) = 0, \quad x \in \Omega \subset \subset \mathbb R^N \quad \text{ for } \quad 1\leq s \leq N-1, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where each operator <inline-formula><tex-math id="M1">\begin{document}$ A_i $\end{document}</tex-math></inline-formula> behaves directionally as the singular <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian, <inline-formula><tex-math id="M3">\begin{document}$ 1< p < 2 $\end{document}</tex-math></inline-formula> and the supercritical condition <inline-formula><tex-math id="M4">\begin{document}$ p+(N-s)(p-2)>0 $\end{document}</tex-math></inline-formula> holds true. We show that the Harnack inequality can be proved without the continuity of solutions and that in turn this implies Hölder continuity of solutions.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.