Abstract

In the Unordered Maximum Tree Orientation problem, a set P of paths in a tree and a parameter k is given, and we want to orient the edges in the tree such that all but at most k paths in P become directed paths. This is a more difficult variant of a well-studied problem in computational biology where the directions of paths in P are already given. We show that the parameterized complexity of the unordered version is between Edge Bipartization and Vertex Bipartization, and we give a characterization of orientable path sets in trees by forbidden substructures, which are cycles of a certain kind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.