Abstract

Minimum bounded edge-partition divides the edge set of a tree into the minimum number of disjoint connected components given a maximum weight for any component. It is an adaptation of the uniform edge-partition of a tree. An optimization algorithm is developed for this NP-hard problem, based on repeated bin packing of inter-related instances. The algorithm has linear running time for the class of ‘balanced trees’ common for the stochastic programming application which motivated investigation of this problem. Fast 2-approximation algorithms are formed for general instances by replacing the optimal bin packing with almost any bin packing heuristic. The asymptotic worst-case ratio of these approximation algorithms is never better than the absolute worst-case ratio of the bin packing heuristic used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.