Abstract
We obtain an estimate of the operator norm of the weighted Kakeya (Nikodým) maximal operator without dilation on $L^2(w)$. Here we assume that a radial weight $w$ satisfies the doubling and supremum condition. Recall that, in the definition of the Kakeya maximal operator, the rectangle in the supremum ranges over all rectangles in the plane pointed in all possible directions and having side lengths $a$ and $aN$ with $N$ fixed. We are interested in its eccentricity $N$ with $a$ fixed. We give an example of a non-constant weight showing that $\sqrt{\log N}$ cannot be removed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.