Abstract
In previous works we have seen that a finitely generated torsion-free non-elementary function group is uniquely determined by its commutator subgroup. In this note, we observe that under the presence of orientation-reversing conformal automorphisms the above rigidity property still valid. More precisely, we see that finitely generated torsion-free reversing Fuchsian groups of the first kind, without parabolic transformations, are uniquely determined by their commutator subgroup. The arguments of the proof follows the same lines as for the orientable situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.