Abstract

It is known that if an irreducible and aperiodic Markov chain satisfies a ‘drift' condition in terms of a non-negative measurable function g(x), it is geometrically ergodic. See, e.g. Nummelin (1984), p. 90. We extend the analysis to show that the distance between the nth-step transition probability and the invariant probability measure is bounded above by ρ n (a + bg(x)) for some constants a, b> 0 and ρ < 1. The result is then applied to obtain convergence rates to the invariant probability measures for an autoregressive process and a random walk on a half line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.