Abstract

We study the generalized Camassa-Holm equation which contains the Camassa-Holm (CH) equation and Novikov equation as special cases with the periodic boundary condition. We get a blow-up scenario and obtain the global existence of strong and weak solutions under suitable assumptions, respectively. Then, we construct the periodic peaked solutions and apply them to prove the ill-posedness inHswiths<3/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.