Abstract
In this work, we are interested on the study of the Fujita exponent and the meaning of the blow-up for the fractional Cauchy problem with the Hardy potential, namely, $ {u_t} + {( - \Delta )^s}u = \lambda \frac{u}{{|x{|^{2s}}}} + {u^p}{\rm{ }}\;{\rm{in}}\;{I\!\!R}^N,u(x,0) = {u_0}(x)\;{\rm{in}}\;{I\!\!R}^N, $ where \lt i \gt N \lt /i \gt \gt 2 \lt i \gt s \lt /i \gt , 0 \lt \lt i \gt s \lt /i \gt \lt 1, (-∆) \lt sup \gt \lt i \gt s \lt /i \gt \lt /sup \gt is the fractional laplacian of order 2 \lt i \gt s \lt /i \gt , \lt i \gt λ \lt /i \gt \gt 0, \lt i \gt u \lt /i \gt \lt sub \gt 0 \lt /sub \gt ≥ 0, and 1 \lt \lt i \gt p \lt /i \gt \lt \lt i \gt p \lt /i \gt \lt sub \gt + \lt /sub \gt ( \lt i \gt s \lt /i \gt , \lt i \gt λ \lt /i \gt ), where \lt i \gt p \lt /i \gt \lt sub \gt + \lt /sub \gt ( \lt i \gt λ \lt /i \gt , \lt i \gt s \lt /i \gt ) is the critical existence power to be given subsequently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.