Abstract

In this article, we present, throughout two basic models of damped nonlinear Schrödinger (NLS)–type equations, a new idea to bound from above the fractal dimension of the global attractors for NLS‐type equations. This could answer the following open issue: consider, for instance, the classical one‐dimensional cubic nonlinear Schrödinger equation “How can we bound the fractal dimension of the associate global attractor without the need to assume that the external forcing term f has some decay at infinity (that is belonging to some weighted Lebesgue space)?”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.