Abstract

Let M be a random m×n rank-r matrix over the binary field F2, and let wt(M) be its Hamming weight, that is, the number of nonzero entries of M.We prove that, as m,n→+∞ with r fixed and m/n tending to a constant, we have thatwt(M)−1−2−r2mn2−r(1−2−r)4(m+n)mn converges in distribution to a standard normal random variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.