Abstract

Let $c\geq 2$ be a positive integer. Terai [‘A note on the Diophantine equation $x^{2}+q^{m}=c^{n}$’, Bull. Aust. Math. Soc.90 (2014), 20–27] conjectured that the exponential Diophantine equation $x^{2}+(2c-1)^{m}=c^{n}$ has only the positive integer solution $(x,m,n)=(c-1,1,2)$. He proved his conjecture under various conditions on $c$ and $2c-1$. In this paper, we prove Terai’s conjecture under a wider range of conditions on $c$ and $2c-1$. In particular, we show that the conjecture is true if $c\equiv 3\hspace{0.6em}({\rm mod}\hspace{0.2em}4)$ and $3\leq c\leq 499$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.