Abstract
We deal with a stochastic programming problem that can be inconsistent. To overcome the inconsistency we apply Tikhonov's regularization technique, and, using recent results on the convergence rate of empirical measures in Wasserstein metric, we treat the following two related problems: 1. A choice of regularization parameters that guarantees the convergence of the minimization procedure. 2. Estimation of the rate of convergence in probability. Considering both light and heavy tail distributions and Lipschitz objective functions (which can be unbounded), we obtain the power bounds for the convergence rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.