Abstract
Sliced inverse regression (SIR) is a clever technique for reducing the dimension of the predictor in regression problems, thus avoiding the curse of dimensionality. There exist many contributions on various aspects of the performance of SIR. Up to now, few attention has been paid to the problem of choosing the number of slices within the SIR procedure appropriately. The aim of this paper is to show that especially the estimation of the reduced dimension can be strongly in?uenced by the chosen number of slices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.