Abstract

We show that the previously known off-shell nilpotent [Formula: see text] and absolutely anticommuting (sb sab + sab sb = 0) Becchi–Rouet–Stora–Tyutin (BRST) transformations (sb) and anti-BRST transformations (sab) are the symmetry transformations of the appropriate Lagrangian densities of a four (3+1)-dimensional (4D) free Abelian 2-form gauge theory which do not explicitly incorporate a very specific constrained field condition through a Lagrange multiplier 4D vector field. The above condition, which is the analogue of the Curci–Ferrari restriction of the non-Abelian 1-form gauge theory, emerges from the Euler–Lagrange equations of motion of our present theory and ensures the absolute anticommutativity of the transformations s(a)b. Thus, the coupled Lagrangian densities, proposed in our present investigation, are aesthetically more appealing and more economical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.