Abstract

We address the problem of magnetic field dissipation in the neutron star cores, focusing on the role of neutron superfluidity. Contrary to the results in the literature, we show that in the finite-temperature superfluid matter composed of neutrons, protons, and electrons, magnetic field dissipates exclusively due to Ohmic losses and non-equilibrium beta-processes, and only an admixture of muons restores (to some extent) the role of particle relative motion for the field dissipation. The reason for this discrepancy is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.