Abstract
For a Hamiltonian that can be separated into N+1(N\geq 2) integrable parts, four algorithms can be built for a symplectic integrator. This research compares these algorithms for the first and second order integrators. We found that they have similar local truncation errors represented by error Hamiltonian but rather different numerical stability. When the computation of the main part of the Hamiltonian, H 0, is not expensive, we recommend to use S * type algorithm, which cuts the calculation of the H 0 system into several small time steps as Malhotra(1991) did. As to the order of the N+1 parts in one step calculation, we found that from the large to small would get a slower error accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.