Abstract
This article is concerned with the seemingly simple problem of testing whether latent factors are perfectly correlated (i.e., statistically indistinct). In recent literature, researchers have used different approaches, which are not always correct or complete. We discuss the parameter constraints required to obtain such perfectly correlated latent factors in the context of 4 commonly used models: (a) the oblique factor model, (b) the hierarchical factor model, (c) models in which the factors are predicted by a covariate, and (d) models in which the factors are predictors of a dependent variable. It is shown that the necessary constraints depend on the choice of scaling. We illustrate testing the indistinctiveness of factors with 2 real data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.